home
***
CD-ROM
|
disk
|
FTP
|
other
***
search
/
Software Vault: The Gold Collection
/
Software Vault - The Gold Collection (American Databankers) (1993).ISO
/
cdr25
/
dkb32.zip
/
DKB32SRC.ZIP
/
TEXTURE.C
< prev
next >
Wrap
C/C++ Source or Header
|
1991-05-04
|
36KB
|
1,246 lines
/*****************************************************************************
*
* texture.c
*
* from DKBTrace (c) 1990 David Buck
*
* This module implements solid texturing functions such as wood, marble, and
* bozo. The noise function used here is the one described by Ken Perlin in
* "Hypertexture", SIGGRAPH '89 Conference Proceedings page 253.
*
* This software is freely distributable. The source and/or object code may be
* copied or uploaded to communications services so long as this notice remains
* at the top of each file. If any changes are made to the program, you must
* clearly indicate in the documentation and in the programs startup message
* who it was who made the changes. The documentation should also describe what
* those changes were. This software may not be included in whole or in
* part into any commercial package without the express written consent of the
* author. It may, however, be included in other public domain or freely
* distributed software so long as the proper credit for the software is given.
*
* This software is provided as is without any guarantees or warranty. Although
* the author has attempted to find and correct any bugs in the software, he
* is not responsible for any damage caused by the use of the software. The
* author is under no obligation to provide service, corrections, or upgrades
* to this package.
*
* Despite all the legal stuff above, if you do find bugs, I would like to hear
* about them. Also, if you have any comments or questions, you may contact me
* at the following address:
*
* David Buck
* 22C Sonnet Cres.
* Nepean Ontario
* Canada, K2H 8W7
*
* I can also be reached on the following bulleton boards:
*
* OMX (613) 731-3419
* Mystic (613) 596-4249 or (613) 596-4772
*
* Fidonet: 1:163/109.9
* Internet: dbuck@ccs.carleton.ca
* The "You Can Call Me RAY" BBS (708) 358-5611
*
* IBM Port by Aaron A. Collins. Aaron may be reached on the following BBS'es:
*
* The "You Can Call Me RAY" BBS (708) 358-5611
* The Information Exchange BBS (708) 945-5575
*
*
* The Noise and DNoise functions (and associated functions) were written by
* Robert Skinner (robert@sgi.com) and are used here with his permission.
* They are a lot better than the noise functions I had before!
*
*****************************************************************************/
#include "frame.h"
#include "vector.h"
#include "dkbproto.h"
extern long Calls_To_Noise, Calls_To_DNoise;
#define MINX -10000 /* Ridiculously large scaling values */
#define MINY MINX
#define MINZ MINX
#define MAXSIZE 267
#define RNDMASK 0x7FFF
#define RNDDIVISOR (float) RNDMASK
#define NUMBER_OF_WAVES 10
#define SINTABSIZE 1000
#define FLOOR(x) ((x) >= 0.0 ? floor(x) : (0.0 - floor(0.0 - (x)) - 1.0))
#define FABS(x) ((x) < 0.0 ? (0.0 - x) : (x))
#define SCURVE(a) ((a)*(a)*(3.0-2.0*(a)))
#define REALSCALE ( 2.0 / 65535.0 )
#define Hash3d(a,b,c) hashTable[(int)(hashTable[(int)(hashTable[(int)((a) & 0xfffL)] ^ ((b) & 0xfffL))] ^ ((c) & 0xfffL))]
#define INCRSUM(m,s,x,y,z) ((s)*(RTable[m]*0.5 \
+ RTable[m+1]*(x) \
+ RTable[m+2]*(y) \
+ RTable[m+3]*(z)))
extern int Options;
DBL sintab [SINTABSIZE];
DBL frequency[NUMBER_OF_WAVES];
VECTOR Wave_Sources[NUMBER_OF_WAVES];
DBL RTable[MAXSIZE];
short *hashTable;
unsigned short crctab[256] =
{
0x0000, 0xc0c1, 0xc181, 0x0140, 0xc301, 0x03c0, 0x0280, 0xc241,
0xc601, 0x06c0, 0x0780, 0xc741, 0x0500, 0xc5c1, 0xc481, 0x0440,
0xcc01, 0x0cc0, 0x0d80, 0xcd41, 0x0f00, 0xcfc1, 0xce81, 0x0e40,
0x0a00, 0xcac1, 0xcb81, 0x0b40, 0xc901, 0x09c0, 0x0880, 0xc841,
0xd801, 0x18c0, 0x1980, 0xd941, 0x1b00, 0xdbc1, 0xda81, 0x1a40,
0x1e00, 0xdec1, 0xdf81, 0x1f40, 0xdd01, 0x1dc0, 0x1c80, 0xdc41,
0x1400, 0xd4c1, 0xd581, 0x1540, 0xd701, 0x17c0, 0x1680, 0xd641,
0xd201, 0x12c0, 0x1380, 0xd341, 0x1100, 0xd1c1, 0xd081, 0x1040,
0xf001, 0x30c0, 0x3180, 0xf141, 0x3300, 0xf3c1, 0xf281, 0x3240,
0x3600, 0xf6c1, 0xf781, 0x3740, 0xf501, 0x35c0, 0x3480, 0xf441,
0x3c00, 0xfcc1, 0xfd81, 0x3d40, 0xff01, 0x3fc0, 0x3e80, 0xfe41,
0xfa01, 0x3ac0, 0x3b80, 0xfb41, 0x3900, 0xf9c1, 0xf881, 0x3840,
0x2800, 0xe8c1, 0xe981, 0x2940, 0xeb01, 0x2bc0, 0x2a80, 0xea41,
0xee01, 0x2ec0, 0x2f80, 0xef41, 0x2d00, 0xedc1, 0xec81, 0x2c40,
0xe401, 0x24c0, 0x2580, 0xe541, 0x2700, 0xe7c1, 0xe681, 0x2640,
0x2200, 0xe2c1, 0xe381, 0x2340, 0xe101, 0x21c0, 0x2080, 0xe041,
0xa001, 0x60c0, 0x6180, 0xa141, 0x6300, 0xa3c1, 0xa281, 0x6240,
0x6600, 0xa6c1, 0xa781, 0x6740, 0xa501, 0x65c0, 0x6480, 0xa441,
0x6c00, 0xacc1, 0xad81, 0x6d40, 0xaf01, 0x6fc0, 0x6e80, 0xae41,
0xaa01, 0x6ac0, 0x6b80, 0xab41, 0x6900, 0xa9c1, 0xa881, 0x6840,
0x7800, 0xb8c1, 0xb981, 0x7940, 0xbb01, 0x7bc0, 0x7a80, 0xba41,
0xbe01, 0x7ec0, 0x7f80, 0xbf41, 0x7d00, 0xbdc1, 0xbc81, 0x7c40,
0xb401, 0x74c0, 0x7580, 0xb541, 0x7700, 0xb7c1, 0xb681, 0x7640,
0x7200, 0xb2c1, 0xb381, 0x7340, 0xb101, 0x71c0, 0x7080, 0xb041,
0x5000, 0x90c1, 0x9181, 0x5140, 0x9301, 0x53c0, 0x5280, 0x9241,
0x9601, 0x56c0, 0x5780, 0x9741, 0x5500, 0x95c1, 0x9481, 0x5440,
0x9c01, 0x5cc0, 0x5d80, 0x9d41, 0x5f00, 0x9fc1, 0x9e81, 0x5e40,
0x5a00, 0x9ac1, 0x9b81, 0x5b40, 0x9901, 0x59c0, 0x5880, 0x9841,
0x8801, 0x48c0, 0x4980, 0x8941, 0x4b00, 0x8bc1, 0x8a81, 0x4a40,
0x4e00, 0x8ec1, 0x8f81, 0x4f40, 0x8d01, 0x4dc0, 0x4c80, 0x8c41,
0x4400, 0x84c1, 0x8581, 0x4540, 0x8701, 0x47c0, 0x4680, 0x8641,
0x8201, 0x42c0, 0x4380, 0x8341, 0x4100, 0x81c1, 0x8081, 0x4040
};
void Compute_Colour (Colour, Colour_Map, value)
COLOUR *Colour;
COLOUR_MAP *Colour_Map;
DBL value;
{
register int i;
COLOUR_MAP_ENTRY *Entry;
register DBL fraction;
if (value > 1.0)
value = 1.0;
if (value < 0.0)
value = 0.0;
for (i = 0, Entry = &(Colour_Map->Colour_Map_Entries[0]) ; i < Colour_Map -> Number_Of_Entries ; i++, Entry++)
if ((value >= Entry->start) && (value <= Entry->end))
{
fraction = (value - Entry->start) / (Entry->end - Entry->start);
Colour -> Red = Entry->Start_Colour.Red + fraction * (Entry->End_Colour.Red - Entry->Start_Colour.Red);
Colour -> Green = Entry->Start_Colour.Green + fraction * (Entry->End_Colour.Green - Entry->Start_Colour.Green);
Colour -> Blue = Entry->Start_Colour.Blue + fraction * (Entry->End_Colour.Blue - Entry->Start_Colour.Blue);
Colour -> Alpha = Entry->Start_Colour.Alpha + fraction * (Entry->End_Colour.Alpha - Entry->Start_Colour.Alpha);
return;
}
Colour -> Red = 0.0;
Colour -> Green = 0.0;
Colour -> Blue = 0.0;
Colour -> Alpha = 0.0;
printf ("No colour for value: %g\n", value);
return;
}
void Initialize_Noise ()
{
register int i = 0;
VECTOR point;
InitRTable();
for (i = 0 ; i < SINTABSIZE ; i++)
sintab[i] = sin(i/(DBL)SINTABSIZE * (3.14159265359 * 2.0));
for (i = 0 ; i < NUMBER_OF_WAVES ; i++)
{
DNoise (&point, (DBL) i, 0.0, 0.0);
VNormalize (Wave_Sources[i], point);
frequency[i] = (rand() & RNDMASK) / RNDDIVISOR + 0.01;
}
}
void InitTextureTable()
{
int i, j, temp;
srand(0);
if ((hashTable = (short int *) malloc(4096*sizeof(short int))) == NULL) {
printf("Cannot allocate memory for hash table\n");
exit(1);
}
for (i = 0; i < 4096; i++)
hashTable[i] = i;
for (i = 4095; i >= 0; i--) {
j = rand() % 4096;
temp = hashTable[i];
hashTable[i] = hashTable[j];
hashTable[j] = temp;
}
}
/* modified by AAC to work properly with little bitty integers (16 bits) */
void InitRTable()
{
int i;
VECTOR rp;
InitTextureTable();
for (i = 0; i < MAXSIZE; i++)
{
rp.x = rp.y = rp.z = (DBL)i;
RTable[i] = (unsigned int) R(&rp) * REALSCALE - 1.0;
}
}
int R(v)
VECTOR *v;
{
v->x *= .12345;
v->y *= .12345;
v->z *= .12345;
return (Crc16((char *) v, sizeof(VECTOR)));
}
/*
* Note that passing a VECTOR array to Crc16 and interpreting it as
* an array of chars means that machines with different floating-point
* representation schemes will evaluate Noise(point) differently.
*/
int Crc16(buf, count)
register char *buf;
register int count;
{
register unsigned short crc = 0;
while (count--)
crc = (crc >> 8) ^ crctab[ (unsigned char) (crc ^ *buf++) ];
return ((int) crc);
}
/*
Robert's Skinner's Perlin-style "Noise" function - modified by AAC
to ensure uniformly distributed clamped values between 0 and 1.0...
*/
void setup_lattice(x, y, z, ix, iy, iz, jx, jy, jz, sx, sy, sz, tx, ty, tz)
DBL *x, *y, *z, *sx, *sy, *sz, *tx, *ty, *tz;
long *ix, *iy, *iz, *jx, *jy, *jz;
{
/* ensures the values are positive. */
*x -= MINX;
*y -= MINY;
*z -= MINZ;
/* its equivalent integer lattice point. */
*ix = (long)*x; *iy = (long)*y; *iz = (long)*z;
*jx = *ix + 1; *jy = *iy + 1; *jz = *iz + 1;
*sx = SCURVE(*x - *ix); *sy = SCURVE(*y - *iy); *sz = SCURVE(*z - *iz);
/* the complement values of sx,sy,sz */
*tx = 1.0 - *sx; *ty = 1.0 - *sy; *tz = 1.0 - *sz;
return;
}
DBL Noise(x, y, z)
DBL x, y, z;
{
long ix, iy, iz, jx, jy, jz;
DBL sx, sy, sz, tx, ty, tz;
DBL sum;
short m;
Calls_To_Noise++;
setup_lattice(&x, &y, &z, &ix, &iy, &iz, &jx, &jy, &jz, &sx, &sy, &sz, &tx, &ty, &tz);
/*
* interpolate!
*/
m = Hash3d( ix, iy, iz ) & 0xFF;
sum = INCRSUM(m,(tx*ty*tz),(x-ix),(y-iy),(z-iz));
m = Hash3d( jx, iy, iz ) & 0xFF;
sum += INCRSUM(m,(sx*ty*tz),(x-jx),(y-iy),(z-iz));
m = Hash3d( ix, jy, iz ) & 0xFF;
sum += INCRSUM(m,(tx*sy*tz),(x-ix),(y-jy),(z-iz));
m = Hash3d( jx, jy, iz ) & 0xFF;
sum += INCRSUM(m,(sx*sy*tz),(x-jx),(y-jy),(z-iz));
m = Hash3d( ix, iy, jz ) & 0xFF;
sum += INCRSUM(m,(tx*ty*sz),(x-ix),(y-iy),(z-jz));
m = Hash3d( jx, iy, jz ) & 0xFF;
sum += INCRSUM(m,(sx*ty*sz),(x-jx),(y-iy),(z-jz));
m = Hash3d( ix, jy, jz ) & 0xFF;
sum += INCRSUM(m,(tx*sy*sz),(x-ix),(y-jy),(z-jz));
m = Hash3d( jx, jy, jz ) & 0xFF;
sum += INCRSUM(m,(sx*sy*sz),(x-jx),(y-jy),(z-jz));
sum = sum + 0.5; /* range at this point -0.5 - 0.5... */
if (sum < 0.0)
sum = 0.0;
if (sum > 1.0)
sum = 1.0;
return (sum);
}
/*
Vector-valued version of "Noise"
*/
void DNoise(result, x, y, z)
VECTOR *result;
DBL x, y, z;
{
long ix, iy, iz, jx, jy, jz;
DBL px, py, pz, s;
DBL sx, sy, sz, tx, ty, tz;
short m;
Calls_To_DNoise++;
setup_lattice(&x, &y, &z, &ix, &iy, &iz, &jx, &jy, &jz, &sx, &sy, &sz, &tx, &ty, &tz);
/*
* interpolate!
*/
m = Hash3d( ix, iy, iz ) & 0xFF;
px = x-ix; py = y-iy; pz = z-iz;
s = tx*ty*tz;
result->x = INCRSUM(m,s,px,py,pz);
result->y = INCRSUM(m+4,s,px,py,pz);
result->z = INCRSUM(m+8,s,px,py,pz);
m = Hash3d( jx, iy, iz ) & 0xFF;
px = x-jx;
s = sx*ty*tz;
result->x += INCRSUM(m,s,px,py,pz);
result->y += INCRSUM(m+4,s,px,py,pz);
result->z += INCRSUM(m+8,s,px,py,pz);
m = Hash3d( jx, jy, iz ) & 0xFF;
py = y-jy;
s = sx*sy*tz;
result->x += INCRSUM(m,s,px,py,pz);
result->y += INCRSUM(m+4,s,px,py,pz);
result->z += INCRSUM(m+8,s,px,py,pz);
m = Hash3d( ix, jy, iz ) & 0xFF;
px = x-ix;
s = tx*sy*tz;
result->x += INCRSUM(m,s,px,py,pz);
result->y += INCRSUM(m+4,s,px,py,pz);
result->z += INCRSUM(m+8,s,px,py,pz);
m = Hash3d( ix, jy, jz ) & 0xFF;
pz = z-jz;
s = tx*sy*sz;
result->x += INCRSUM(m,s,px,py,pz);
result->y += INCRSUM(m+4,s,px,py,pz);
result->z += INCRSUM(m+8,s,px,py,pz);
m = Hash3d( jx, jy, jz ) & 0xFF;
px = x-jx;
s = sx*sy*sz;
result->x += INCRSUM(m,s,px,py,pz);
result->y += INCRSUM(m+4,s,px,py,pz);
result->z += INCRSUM(m+8,s,px,py,pz);
m = Hash3d( jx, iy, jz ) & 0xFF;
py = y-iy;
s = sx*ty*sz;
result->x += INCRSUM(m,s,px,py,pz);
result->y += INCRSUM(m+4,s,px,py,pz);
result->z += INCRSUM(m+8,s,px,py,pz);
m = Hash3d( ix, iy, jz ) & 0xFF;
px = x-ix;
s = tx*ty*sz;
result->x += INCRSUM(m,s,px,py,pz);
result->y += INCRSUM(m+4,s,px,py,pz);
result->z += INCRSUM(m+8,s,px,py,pz);
}
DBL Turbulence (x, y, z)
DBL x, y, z;
{
register DBL pixelSize = 0.1;
register DBL t = 0.0;
register DBL scale, value;
for (scale = 1.0 ; scale > pixelSize ; scale *= 0.5) {
value = Noise (x/scale, y/scale, z/scale);
t += FABS (value) * scale;
}
return (t);
}
void DTurbulence (result, x, y, z)
VECTOR *result;
DBL x, y, z;
{
register DBL pixelSize = 0.01;
register DBL scale;
VECTOR value;
result -> x = 0.0;
result -> y = 0.0;
result -> z = 0.0;
value.x = value.y = value.z = 0.0;
for (scale = 1.0 ; scale > pixelSize ; scale *= 0.5) {
DNoise(&value, x/scale, y/scale, z/scale);
result -> x += value.x * scale;
result -> y += value.y * scale;
result -> z += value.z * scale;
}
}
DBL cycloidal (value)
DBL value;
{
if (value >= 0.0)
return (sintab [(int)((value - floor (value)) * SINTABSIZE)]);
else
return (0.0 - sintab [(int)((0.0 - (value + floor (0.0 - value)))
* SINTABSIZE)]);
}
DBL Triangle_Wave (value)
DBL value;
{
register DBL offset;
if (value >= 0.0) offset = value - floor(value);
else offset = value - (-1.0 - floor(FABS(value)));
if (offset >= 0.5) return (2.0 * (1.0 - offset));
else return (2.0 * offset);
}
int Bozo (x, y, z, Texture, Colour)
DBL x, y, z;
TEXTURE *Texture;
COLOUR *Colour;
{
register DBL noise, turb;
COLOUR New_Colour;
VECTOR BozoTurbulence;
if (Options & DEBUGGING)
printf ("bozo %g %g %g ", x, y, z);
if ((turb = Texture->Turbulence) != 0.0)
{
DTurbulence (&BozoTurbulence, x, y, z);
x += BozoTurbulence.x * turb;
y += BozoTurbulence.y * turb;
z += BozoTurbulence.z * turb;
}
noise = Noise (x, y, z);
if (Options & DEBUGGING)
printf ("noise %g\n", noise);
if (Texture -> Colour_Map != NULL) {
Compute_Colour (&New_Colour, Texture->Colour_Map, noise);
Colour -> Red += New_Colour.Red;
Colour -> Green += New_Colour.Green;
Colour -> Blue += New_Colour.Blue;
Colour -> Alpha += New_Colour.Alpha;
return (0);
}
if (noise < 0.4) {
Colour -> Red += 1.0;
Colour -> Green += 1.0;
Colour -> Blue += 1.0;
return (0);
}
if (noise < 0.6) {
Colour -> Green += 1.0;
return (0);
}
if (noise < 0.8) {
Colour -> Blue += 1.0;
return (0);
}
Colour -> Red += 1.0;
return (0);
}
int marble (x, y, z, Texture, colour)
DBL x, y, z;
TEXTURE *Texture;
COLOUR *colour;
{
register DBL noise, hue;
COLOUR New_Colour;
noise = Triangle_Wave(x + Turbulence(x, y, z) * Texture -> Turbulence);
if (Options & DEBUGGING)
printf ("marble %g %g %g noise %g \n", x, y, z, noise);
if (Texture -> Colour_Map != NULL)
{
Compute_Colour (&New_Colour, Texture->Colour_Map, noise);
colour -> Red += New_Colour.Red;
colour -> Green += New_Colour.Green;
colour -> Blue += New_Colour.Blue;
colour -> Alpha += New_Colour.Alpha;
return (0);
}
if (noise < 0.0)
{
colour -> Red += 0.9;
colour -> Green += 0.8;
colour -> Blue += 0.8;
}
else if (noise < 0.9)
{
colour -> Red += 0.9;
hue = 0.8 - noise * 0.8;
colour -> Green += hue;
colour -> Blue += hue;
}
return (0);
}
void ripples (x, y, z, Texture, Vector)
DBL x, y, z;
TEXTURE *Texture;
VECTOR *Vector;
{
register int i;
VECTOR point;
register DBL length, scalar, index;
if (Options & DEBUGGING)
printf ("ripples %g %g %g", x, y, z);
for (i = 0 ; i < NUMBER_OF_WAVES ; i++) {
point.x = x;
point.y = y;
point.z = z;
VSub (point, point, Wave_Sources[i]);
VDot (length, point, point);
if (length == 0.0)
length = 1.0;
length = sqrt(length);
index = length*Texture->Frequency
+ Texture -> Phase;
scalar = cycloidal (index) * Texture -> Bump_Amount;
if (Options & DEBUGGING)
printf (" index %g scalar %g length %g\n", index, scalar, length);
VScale (point, point, scalar/length/(DBL)NUMBER_OF_WAVES);
VAdd (*Vector, *Vector, point);
}
VNormalize (*Vector, *Vector);
}
void waves (x, y, z, Texture, Vector)
DBL x, y, z;
TEXTURE *Texture;
VECTOR *Vector;
{
register int i;
VECTOR point;
register DBL length, scalar, index, sinValue ;
if (Options & DEBUGGING)
printf ("waves %g %g %g\n", x, y, z);
for (i = 0 ; i < NUMBER_OF_WAVES ; i++) {
point.x = x;
point.y = y;
point.z = z;
VSub (point, point, Wave_Sources[i]);
VDot (length, point, point);
if (length == 0.0)
length = 1.0;
length = sqrt(length);
index = (length * Texture -> Frequency * frequency[i])
+ Texture -> Phase;
sinValue = cycloidal (index);
scalar = sinValue * Texture -> Bump_Amount /
frequency[i];
VScale (point, point, scalar/length/(DBL)NUMBER_OF_WAVES);
VAdd (*Vector, *Vector, point);
}
VNormalize (*Vector, *Vector);
}
int wood (x, y, z, Texture, colour)
DBL x, y, z;
TEXTURE *Texture;
COLOUR *colour;
{
register DBL noise, length;
VECTOR WoodTurbulence;
VECTOR point;
COLOUR New_Colour;
DTurbulence (&WoodTurbulence, x, y, z);
if (Options & DEBUGGING)
printf ("wood %g %g %g", x, y, z);
point.x = cycloidal((x + WoodTurbulence.x)
* Texture -> Turbulence);
point.y = cycloidal((y + WoodTurbulence.y)
* Texture -> Turbulence);
point.z = 0.0;
point.x += x;
point.y += y;
point.z += z;
VLength (length, point);
noise = Triangle_Wave(length);
if (Options & DEBUGGING)
printf ("noise %g\n", noise);
if (Texture -> Colour_Map != NULL) {
Compute_Colour (&New_Colour, Texture->Colour_Map, noise);
colour -> Red += New_Colour.Red;
colour -> Green += New_Colour.Green;
colour -> Blue += New_Colour.Blue;
colour -> Alpha += New_Colour.Alpha;
return (0);
}
if (noise > 0.6) {
colour -> Red += 0.4;
colour -> Green += 0.133;
colour -> Blue += 0.066;
}
else {
colour -> Red += 0.666;
colour -> Green += 0.312;
colour -> Blue += 0.2;
}
return (0);
}
void checker (x, y, z, Texture, colour)
DBL x, y, z;
TEXTURE *Texture;
COLOUR *colour;
{
int brkindx;
brkindx = (int) FLOOR(x) + (int) FLOOR(z);
if (Options & DEBUGGING)
printf ("checker %g %g %g\n", x, y, z);
if (brkindx & 1)
*colour = *Texture -> Colour1;
else
*colour = *Texture -> Colour2;
return;
}
void checker_texture (x, y, z, Texture, colour)
DBL x, y, z;
TEXTURE *Texture;
COLOUR *colour;
{
int brkindx;
VECTOR Point;
brkindx = (int) FLOOR(x) + (int) FLOOR(z);
if (Options & DEBUGGING)
printf ("checker_texture %g %g %g\n", x, y, z);
Make_Vector (&Point, x, y, z);
if (brkindx & 1)
Colour_At (colour, ((TEXTURE *) Texture -> Colour1), &Point);
else
Colour_At (colour, ((TEXTURE *) Texture -> Colour2), &Point);
return;
}
/*
Ideas garnered from SIGGRAPH '85 Volume 19 Number 3, "An Image Synthesizer"
By Ken Perlin.
*/
/*
With a little reflectivity and brilliance, can look like organ pipe
metal. With tiny scaling values can look like masonry or concrete.
Works with color maps, supposedly. (?)
*/
void spotted (x, y, z, Texture, Colour)
DBL x, y, z;
TEXTURE *Texture;
COLOUR *Colour;
{
register DBL noise;
COLOUR New_Colour;
noise = Noise (x, y, z);
if (Options & DEBUGGING)
printf ("spotted %g %g %g\n", x, y, z);
if (Texture -> Colour_Map != NULL)
{
Compute_Colour (&New_Colour, Texture->Colour_Map, noise);
Colour -> Red += New_Colour.Red;
Colour -> Green += New_Colour.Green;
Colour -> Blue += New_Colour.Blue;
Colour -> Alpha += New_Colour.Alpha;
return;
}
Colour -> Red += noise; /* "white (1.0) * noise" */
Colour -> Green += noise;
Colour -> Blue += noise;
return;
}
void bumps (x, y, z, Texture, normal)
DBL x, y, z;
TEXTURE *Texture;
VECTOR *normal;
{
VECTOR bump_turb;
if (Texture -> Bump_Amount == 0.0)
return; /* why are we here?? */
if (Options & DEBUGGING)
printf ("bumps %g %g %g\n", x, y, z);
DNoise (&bump_turb, x, y, z); /* Get Normal Displacement Val. */
VScale(bump_turb, bump_turb, Texture->Bump_Amount);
VAdd (*normal, *normal, bump_turb); /* displace "normal" */
VNormalize (*normal, *normal); /* normalize normal! */
return;
}
/*
dents is similar to bumps, but uses noise() to control the amount of
dnoise() perturbation of the object normal...
*/
void dents (x, y, z, Texture, normal)
DBL x, y, z;
TEXTURE *Texture;
VECTOR *normal;
{
VECTOR stucco_turb;
DBL noise;
if (Texture -> Bump_Amount == 0.0)
return; /* why are we here?? */
noise = Noise (x, y, z);
noise = noise * noise * noise * Texture->Bump_Amount;
if (Options & DEBUGGING)
printf ("dents %g %g %g noise %g\n", x, y, z, noise);
DNoise (&stucco_turb, x, y, z); /* Get Normal Displacement Val. */
VScale (stucco_turb, stucco_turb, noise);
VAdd (*normal, *normal, stucco_turb); /* displace "normal" */
VNormalize (*normal, *normal); /* normalize normal! */
return;
}
void agate (x, y, z, Texture, colour)
DBL x, y, z;
TEXTURE *Texture;
COLOUR *colour;
{
register DBL noise, hue;
COLOUR New_Colour;
noise = cycloidal(1.3 * Turbulence(x, y, z) + 1.1 * z) + 1;
noise *= 0.5;
noise = pow(noise, 0.77);
if (Options & DEBUGGING)
printf ("agate %g %g %g noise %g\n", x, y, z, noise);
if (Texture -> Colour_Map != NULL)
{
Compute_Colour (&New_Colour, Texture->Colour_Map, noise);
colour -> Red += New_Colour.Red;
colour -> Green += New_Colour.Green;
colour -> Blue += New_Colour.Blue;
colour -> Alpha += New_Colour.Alpha;
return;
}
hue = 1.0 - noise;
if (noise < 0.5)
{
colour -> Red += (1.0 - (noise / 10));
colour -> Green += (1.0 - (noise / 5));
colour -> Blue += hue;
}
else if (noise < 0.6)
{
colour -> Red += 0.9;
colour -> Green += 0.7;
colour -> Blue += hue;
}
else
{
colour -> Red += (0.6 + hue);
colour -> Green += (0.3 + hue);
colour -> Blue += hue;
}
return;
}
/*
Ideas garnered from the April 89 Byte Graphics Supplement on RenderMan,
refined from "The RenderMan Companion, by Steve Upstill of Pixar, (C) 1990
Addison-Wesley.
*/
/*
wrinkles - This is my implementation of the dented() routine, using
a surface iterative fractal derived from DTurbulence. This is a 3-D vers.
(thanks to DNoise()...) of the usual version using the singular Noise()...
Seems to look a lot like wrinkles, however... (hmmm)
*/
void wrinkles (x, y, z, Texture, normal)
DBL x, y, z;
TEXTURE *Texture;
VECTOR *normal;
{
register int i;
register DBL scale = 1.0;
VECTOR result, value;
if (Texture -> Bump_Amount == 0.0)
return; /* why are we here?? */
if (Options & DEBUGGING)
printf ("wrinkles %g %g %g\n", x, y, z);
result.x = 0.0;
result.y = 0.0;
result.z = 0.0;
for (i = 0; i < 10 ; scale *= 2.0, i++)
{
DNoise(&value, x * scale, y * scale, z * scale); /* * scale,*/
result.x += FABS (value.x / scale);
result.y += FABS (value.y / scale);
result.z += FABS (value.z / scale);
}
VScale(result, result, Texture->Bump_Amount);
VAdd (*normal, *normal, result); /* displace "normal" */
VNormalize (*normal, *normal); /* normalize normal! */
return;
}
/*
Granite - kind of a union of the "spotted" and the "dented" textures,
using a 1/f fractal noise function for color values. Typically used
w/ small scaling values. Should work with colour maps for pink granite...
*/
void granite (x, y, z, Texture, Colour)
DBL x, y, z;
TEXTURE *Texture;
COLOUR *Colour;
{
register int i;
register DBL temp, noise = 0.0, freq = 1.0;
COLOUR New_Colour;
for (i = 0; i < 6 ; freq *= 2.0, i++)
{
temp = 0.5 - Noise (x * 4 * freq, y * 4 * freq, z * 4 * freq);
temp = FABS(temp);
noise += temp / freq;
}
if (Options & DEBUGGING)
printf ("granite %g %g %g noise %g\n", x, y, z, noise);
if (Texture -> Colour_Map != NULL)
{
Compute_Colour (&New_Colour, Texture->Colour_Map, noise);
Colour -> Red += New_Colour.Red;
Colour -> Green += New_Colour.Green;
Colour -> Blue += New_Colour.Blue;
Colour -> Alpha += New_Colour.Alpha;
return;
}
Colour -> Red += noise; /* "white (1.0) * noise" */
Colour -> Green += noise;
Colour -> Blue += noise;
return;
}
/*
Further Ideas Garnered from "The RenderMan Companion" (Addison Wesley)
*/
/*
Color Gradient Texture - gradient based on the fractional values of x, y or
z, based on whether or not the given directional vector is a 1.0 or a 0.0.
Note - ONLY works with colour maps, preferably one that is circular - i.e.
the last defined colour (value 1.001) is the same as the first colour (with
a value of 0.0) in the map. The basic concept of this is from DBW Render,
but Dave Wecker's only supports simple Y axis gradients.
*/
void gradient (x, y, z, Texture, Colour)
DBL x, y, z;
TEXTURE *Texture;
COLOUR *Colour;
{
COLOUR New_Colour;
DBL value = 0.0, turb;
VECTOR GradTurbulence;
if ((turb = Texture->Turbulence) != 0.0)
{
DTurbulence (&GradTurbulence, x, y, z);
x += GradTurbulence.x * turb;
y += GradTurbulence.y * turb;
z += GradTurbulence.z * turb;
}
if (Texture -> Colour_Map == NULL)
return;
if (Texture -> Texture_Gradient.x != 0.0)
{
x = FABS(x);
value += x - FLOOR(x); /* obtain fractional X component */
}
if (Texture -> Texture_Gradient.y != 0.0)
{
y = FABS(y);
value += y - FLOOR(y); /* obtain fractional Y component */
}
if (Texture -> Texture_Gradient.z != 0.0)
{
z = FABS(z);
value += z - FLOOR(z); /* obtain fractional Z component */
}
value = ((value > 1.0) ? fmod(value, 1.0) : value); /* clamp to 1.0 */
if (Options & DEBUGGING)
printf ("gradient %g %g %g value %g\n", x, y, z, value);
Compute_Colour(&New_Colour, Texture->Colour_Map, value);
Colour -> Red += New_Colour.Red;
Colour -> Green += New_Colour.Green;
Colour -> Blue += New_Colour.Blue;
Colour -> Alpha += New_Colour.Alpha;
return;
}
/*
2-D to 3-D Procedural Texture Mapping of a Bitmapped Image onto an Object:
Simplistic method of object image projection devised by DKB and AAC.
1. Transform texture in 3-D space if requested.
2. Determine local object 2-d coords from 3-d coords by <X Y Z> triple.
3. Return pixel color value at that position on the 2-d plane of "Image".
3. Map colour value in Image [0..255] to a more normal colour range [0..1].
*/
void texture_map (x, y, z, Texture, colour)
DBL x, y, z;
TEXTURE *Texture;
COLOUR *colour;
{
/* determine local object 2-d coords from 3-d coords */
/* "unwrap" object 2-d coord onto flat 2-d plane */
/* return pixel color value at that posn on 2-d plane */
int xcoor = 0, ycoor = 0;
DBL width, height, turb;
VECTOR TextureTurbulence;
struct Image_Line *line;
int reg_number;
IMAGE_COLOUR *reg_colour;
if ((turb = Texture->Turbulence) != 0.0)
{
DTurbulence (&TextureTurbulence, x, y, z);
x += TextureTurbulence.x * turb;
y += TextureTurbulence.y * turb;
z += TextureTurbulence.z * turb;
}
width = Texture->Image->width;
height = Texture->Image->height;
if (Texture -> Texture_Gradient.x != 0.0) {
if ((Texture->Once_Flag) &&
((x < 0.0) || (x > 1.0))) {
Make_Colour (colour, 1.0, 1.0, 1.0);
colour->Alpha = 1.0;
return;
}
if (Texture -> Texture_Gradient.x > 0)
xcoor = (int) fmod (x * width, width);
else ycoor = (int) fmod (x * height, height);
}
if (Texture -> Texture_Gradient.y != 0.0) {
if ((Texture->Once_Flag) &&
((y < 0.0) || (y > 1.0))) {
Make_Colour (colour, 1.0, 1.0, 1.0);
colour->Alpha = 1.0;
return;
}
if (Texture -> Texture_Gradient.y > 0)
xcoor = (int) fmod (y * width, width);
else ycoor = (int) fmod (y * height, height);
}
if (Texture -> Texture_Gradient.z != 0.0) {
if ((Texture->Once_Flag) &&
((z < 0.0) || (z > 1.0))) {
Make_Colour (colour, 1.0, 1.0, 1.0);
colour->Alpha = 1.0;
return;
}
if (Texture -> Texture_Gradient.z > 0)
xcoor = (int) fmod (z * width, width);
else ycoor = (int) fmod (z * height, height);
}
/* Compensate for y coordinates on the images being upsidedown */
ycoor = Texture->Image->iheight - ycoor;
if (xcoor < 0)
xcoor += Texture->Image->iwidth;
else if (xcoor >= Texture->Image->iwidth)
xcoor -= Texture->Image->iwidth;
if (ycoor < 0)
ycoor += Texture->Image->iheight;
else if (ycoor >= Texture->Image->iheight)
ycoor -= Texture->Image->iheight;
if ((xcoor >= Texture->Image->iwidth) ||
(ycoor >= Texture->Image->iheight) ||
(xcoor < 0) || (ycoor < 0)) {
printf ("Picture index out of range\n");
close_all();
exit (1);
}
if (Options & DEBUGGING)
printf ("texture %g %g %g xcoor %d ycoor %d\n", x, y, z, xcoor, ycoor);
if (Texture->Image->Colour_Map == NULL) {
line = &Texture->Image->data.rgb_lines[ycoor];
colour -> Red += (DBL) line->red[xcoor]/255.0;
colour -> Green += (DBL) line->green[xcoor]/255.0;
colour -> Blue += (DBL) line->blue[xcoor]/255.0;
}
else {
reg_number = Texture->Image->data.map_lines[ycoor][xcoor];
reg_colour = &Texture->Image->Colour_Map[reg_number];
colour -> Red += (DBL) reg_colour->Red/255.0;
colour -> Green += (DBL) reg_colour->Green/255.0;
colour -> Blue += (DBL) reg_colour->Blue/255.0;
colour -> Alpha += (DBL) reg_colour->Alpha/255.0;
}
}
void Translate_Texture (Texture_Ptr, Vector)
TEXTURE **Texture_Ptr;
VECTOR *Vector;
{
TEXTURE *Texture = *Texture_Ptr;
TRANSFORMATION Transformation;
while (Texture != NULL) {
if (((Texture->Texture_Number != NO_TEXTURE)
&& (Texture->Texture_Number != COLOUR_TEXTURE))
|| (Texture->Bump_Number != NO_BUMPS)) {
if (Texture->Constant_Flag) {
Texture = Copy_Texture (Texture);
*Texture_Ptr = Texture;
Texture->Constant_Flag = FALSE;
}
if (!Texture -> Texture_Transformation)
Texture -> Texture_Transformation = Get_Transformation ();
Get_Translation_Transformation (&Transformation,
Vector);
Compose_Transformations (Texture -> Texture_Transformation,
&Transformation);
if (Texture->Texture_Number == CHECKER_TEXTURE_TEXTURE) {
Translate_Texture ((TEXTURE **) &Texture->Colour1, Vector);
Translate_Texture ((TEXTURE **) &Texture->Colour2, Vector);
}
}
Texture_Ptr = &Texture->Next_Texture;
Texture = Texture->Next_Texture;
}
}
void Rotate_Texture (Texture_Ptr, Vector)
TEXTURE **Texture_Ptr;
VECTOR *Vector;
{
TEXTURE *Texture = *Texture_Ptr;
TRANSFORMATION Transformation;
while (Texture != NULL) {
if (((Texture->Texture_Number != NO_TEXTURE)
&& (Texture->Texture_Number != COLOUR_TEXTURE))
|| (Texture->Bump_Number != NO_BUMPS)) {
if (Texture->Constant_Flag) {
Texture = Copy_Texture (Texture);
*Texture_Ptr = Texture;
Texture->Constant_Flag = FALSE;
}
if (!Texture -> Texture_Transformation)
Texture -> Texture_Transformation = Get_Transformation ();
Get_Rotation_Transformation (&Transformation,
Vector);
Compose_Transformations (Texture -> Texture_Transformation,
&Transformation);
if (Texture->Texture_Number == CHECKER_TEXTURE_TEXTURE) {
Rotate_Texture ((TEXTURE **) &Texture->Colour1, Vector);
Rotate_Texture ((TEXTURE **) &Texture->Colour2, Vector);
}
}
Texture_Ptr = &Texture->Next_Texture;
Texture = Texture->Next_Texture;
}
}
void Scale_Texture (Texture_Ptr, Vector)
TEXTURE **Texture_Ptr;
VECTOR *Vector;
{
TEXTURE *Texture = *Texture_Ptr;
TRANSFORMATION Transformation;
while (Texture != NULL) {
if (((Texture->Texture_Number != NO_TEXTURE)
&& (Texture->Texture_Number != COLOUR_TEXTURE))
|| (Texture->Bump_Number != NO_BUMPS)) {
if (Texture->Constant_Flag) {
Texture = Copy_Texture (Texture);
*Texture_Ptr = Texture;
Texture->Constant_Flag = FALSE;
}
if (!Texture -> Texture_Transformation)
Texture -> Texture_Transformation = Get_Transformation ();
Get_Scaling_Transformation (&Transformation,
Vector);
Compose_Transformations (Texture -> Texture_Transformation,
&Transformation);
if (Texture->Texture_Number == CHECKER_TEXTURE_TEXTURE) {
Scale_Texture ((TEXTURE **) &Texture->Colour1, Vector);
Scale_Texture ((TEXTURE **) &Texture->Colour2, Vector);
}
}
Texture_Ptr = &Texture->Next_Texture;
Texture = Texture->Next_Texture;
}
}